

Grade-Level Standard(s)	Thumbnail Sketch of A Single-Algorithm Approach to Meeting These Grade-Level Standards (feedback welcome)
2.NBT.5. Fluently add and subtract within 100 using strategies based on place value, properties of operations, and/or the relationship between addition and subtraction. 2.NBT.6. Add up to four two-digit numbers using strategies based on place value and properties of operations. 2.NBT.7. Add and subtract within 1000, using concrete models or drawings and strategies based on place value, properties of operations, and/or the relationship between addition and subtraction; relate the strategy to a written method. Understand that in adding or subtracting three digit numbers, one adds or subtracts hundreds and hundreds, tens and tens, ones and ones; and sometimes it is necessary to compose or decompose tens or hundreds.	These standards can be met by teaching the material in second grade in roughly the following way. (The following points are listed sequentially, but that doesn't necessarily imply finishing one point before beginning the next.) * Replicating the grade 1 addition approach for two-digit subtraction, then over the course of the year practicing general two-digit addition and subtraction to fluency. * Extending the standard addition algorithm to the case of three and four addends. (In principle this is easy because the standard algorithm scales so well, but the demands on mental computation and single-digit fluency do become greater with more addends.) * Most importantly, extending the standard addition algorithm to three-digit numbers by replicating the grade 1 approach, and extending the grade 2 two-digit subtraction approach to three-digit numbers. * Incorporating these sums and differences into word problems. * Also showing opportunistic strategies for non-generic computations, for example problems such as $212-13,100-88$, or $80+123+20$ where the standard algorithm is probably both slower and less reliable than a readily apparent mental strategy. (One wouldn't penalize a student for passing up an opportunity for mental math and carrying out the written algorithm smoothly; but students who consistently pass up accessible opportunities may be having trouble with number concepts and fluency.)
3.NBT.2. Fluently add and subtract within 1000 using strategies and algorithms based on place value, properties of operations, and/or the relationship between addition and subtraction.	This standard is the same as 2.NBT. 7 except for (a) a new expectation of fluency in the three-digit case and (b) the first mention of "algorithms." This standard can be met by simply continuing to practice the grade 2 work to the point of fluency. (It is true that the word "algorithms" here is plural, but that could simply be read as leaving more choice in the hands of the teacher about which algorithm(s) to teach—not as a requirement for each student to learn two or more general algorithms for each operation!)
4.NBT.4. Fluently add and subtract multi-digit whole numbers using the standard algorithm.	This is the culminating standard for multi-digit addition and subtraction-the endpoint of the development being sketched here from a grade 1 starting point. * Practicing using the standard algorithm for bare computations of sums and differences with generic multi-digit numbers. (Summative assessments should have tighter limits on the number of digits, but six-digit numbers are OK in the curriculum because they align with the conceptual understanding of place value expected at this grade and better reveal the recursive nature of the algorithm itself.) * Incorporating these generic multi-digit sums and differences into word problems. * Also showing opportunistic strategies for non-generic computations, for example problems such as 6,012-13, 400-388, or $800+1,234+200$ where the standard algorithm is probably both slower and less reliable than a readily apparent mental strategy. (One wouldn't penalize a student for passing up an opportunity for mental math and carrying out the written algorithm smoothly; but students who consistently pass up accessible opportunities may be having trouble with number concepts and fluency.)

