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Dick Stanley has advanced the idea that proportionality may usefully be viewed as a relationship between
real-valued functions. This perspective unifies many notions commonly arising in connection with proportion.
This note elaborates and explains his contention as I interpret it.

1. A Proposal

Let R denote the set of real numbers and let R
× denote the set of non-zero reals.

Definition. Let X be a set and let f, g : X → R
×. We say that f and g are proportional if there is a

constant k ∈ R
× such that

for all x ∈ X, g(x) = k f(x).

The number k is called the constant of proportionality relating f to g.

Remark. Some readers may prefer a narrower definition in which k is required to be strictly positive. We do
not need this restriction in order to make the math work. (It might be possible to make the proposal work
for functions that vanish at some points, as long as they don’t vanish on all of X , but I did not investigate
this.)

Examples.

1. Let X be the set of all circles in the plane. For any circle K, let r(K) denote the (length of the) radius
of K and let c(K) denote the (length of the) circumference of K. Then r and c are functions from X
to R, and c is proportional to r because

for all circles K, c(K) = 2 π r(K).

2. Let L and M be parallel lines, and let X be the set of all triangles with base on L and vertex on M . If
T is a triangle in X , let b(T ) be the length of the base of T (measured in some standard unit) and let
A(T ) be the area of T (measured in square units). If h is the distance from L to M , then

for any triangle T ∈ X, A(T ) =
h

2
b(T ).

This is a restatement of Euclid’s Elements , Book VI, Proposition 1: Triangles and parallelograms which
are under the same height are to one another as their bases.

3. Let A be the Cartesian plane with coordinate functions x and y. By x we understand the function from
A to R whose value at the point P (denoted x(P )) is the x-coordiante of P . Similarly y(P ) denotes the
y-coordinate of P . Let L be the line through the point P(2,7) and the origin. Then,

for any point P ∈ L, y(P ) =
7

2
x(P ).

Thus, the restrictions to L of x and y are proportional. Similarly, if K is the line through P(1,−3) and
origin, then for all P on K, y(P ) = −3 x(P ). In this case, −3 is the constant of proportionality relating
the functions x|

K
, y|

K
: K → R

×.

4. Let X be the set of all nuggets of pure gold that are available for measurement. For any nugget x, let
w(x) be the weight of the nugget measured in grams and let V (x) be volume of x measured in cubic
centimeters. Then

if x is any nugget in X, w(x) = 19.3V (x).

The weight of a nugget of pure gold is proportional to its volume. The constant of proportionality is
19.3, the density of gold in grams per cubic centimeter.
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2. Ancient and Modern Ideas about Proportion

In the Elements, Book V, Euclid gives the following

Definition 3. A ratio is a sort of relation in respect of size between two magnitudes of the same
kind.

Definition 4. Magnitudes are said to have a ratio to one another which can, when multiplied, exceed
one another.

Definition 5 states Eudoxus’ criterion for equality of ratios. Proportion is introduced in the next definition:

Definition 6. Magnitudes which have the same ratio are called proportional.

In the typical schoolbook problems, three terms of a proportion are given and the fourth is sought:

If 3 oz. of Silver cost 17s. what will 48 oz. cost?1

If a man can travel 400 miles in 15 days, how far can he travel in 9 days?2

Euclid’s definitions are echoed in many elementary modern treatments of ratio and proportion. For example,
one web site ostensibly geared to school math contains the following statements:

A ratio is a comparison of two numbers. To compare ratios, write them as fractions. The ratios
are equal if they are equal when written as fractions. A proportion is an equation with a ratio on
each side. It is a statement that two ratios are equal.3

In more-advanced contexts, proportion tends to be treated differently. The Wikipedia entry on proportion
begins:

In mathematics, two quantities are called proportional if they vary in such a way that one of the
quantities is a constant multiple of the other, or equivalently if they have a constant ratio. . . .
Given two variables x and y, y is (directly) proportional to x if there is a non-zero constant k such
that y = k x.

The Wikipedia definition appears close the one we are proposing. However, it does not explicitly address the
issue of why or how the two variables, x and y are linked. In the second sentence, there is an asymmetry in
roles of the variables. They appear to be linked by a functional relationship. The idea that proportionality
is a special kind of functional relationship is explicit in some discussions. An essay available at the Dana
Center web site suggests that students may

think of proportional relationships in terms of functions. Specifically, writing y = k x is a way
students can begin to express the relationship between two proportional quantities y and x using
functions: the quantity y is proportional to, or depends on, or can be determined from, or is a
function of, the quantity x.4

The proposal we are advancing goes in a different direction, however. Though functions play a role in the
statement of our proposal, the quantities that are related in a proportion need not be bound to one another
by an input-output relation. We will elaborate below.

3. Contrasts and Conflicts

There is an apparent gulf between the ancient definition (and its contemporary manifestations in school
math) and the more modern conceptualization exemplified in the Wikipedia article. In the first place,
the ancient conception of proportion is specific while the modern conception is generic. In the ancient
framework, a proportion is a relation between four fixed magnitudes appearing in two ratios. There are

1 This is the first problem in the section entitled “Of the Single Rule of Three” in Dilworth’s Schoolmaster’s

Assistant. This problem and several more from the same source are copied and solved in the surviving pages
of Abraham Lincoln’s school sum book, written in his mid-teens.

2 From Practical Arithmetic by James Bates Thomson. (1864).
3 www.mathleague.com/help/ratio/ratio.htm
4 http://www.utdanacenter.org/mathtoolkit/downloads/support/proportionality.pdf
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no variable quantities nor any explicit reference to an enduring relationship between kinds. If the ancient
conceptualization captures any generality, it is in the idea that similar valid proportions might be written
about other specifics. A modern statement of proportionality, on the other hand, speaks explicitly of two
general things (each with numerous instantiations) and of an enduring relationship (that is manifest in each
instantiation).

Second, in the modern perspective, there is an ontological shift, a change in objects of attention. A
proportion is no longer a relationship between two ratios , but a relationship between two variables . Ancient
proportion is a comparison between comparisons of objects of direct experience. Modern proportion is
a comparison between two generic objects. Here, the connection to direct experience is not via specific
comparisons of concrete objects, but in the idea that the generic object has instances that are concrete.

A third major change is in kind of ratios that appear in the ancient and modern conceptualizations.
For the Greeks, ratios were direct comparisons of lengths to lengths, areas to areas, counting number to
counting number, etc. For a variety of good reasons internal to ancient mathematics, ratios across kinds
were not made. In conformity with this tradition, schoolbooks through the 19th century and well into the 20th

emphasized that ratios may be formed only between like quantities. A well-formed proportion might equate a
ratio of prices to a ratio of weights or a ratio of distances to a ratio of times, but explicitly stated conventions
prohibited forming a ratio of price to weight or of distance to time. (This does not mean that people did
not calculate and use such things; all I am saying is that the textbooks of the 19th century obsessively
repeated the ancient Greek strictures.) In contrast, the first sentence of the Wikipedia excerpt mentions a
ratio between two varying quantities of different kinds. As a matter of fact, constants of proportionality are
almost always ratios across species. A concern for the ancient tradition has led many writers to insist that
a constant of proportionality should not be called a “ratio” at all, but a “rate”.

The contrast between the ancient and modern treatments is vivid in the second example in the first
section. Euclid would say: Given two triangles with the same height, the ratio of their areas is equal to
the ratio of their bases. The author of the Wikipedia article would say that if A is the area of a triangle
and b is its base, then for all triangles with height h, A = (h/2)b. Now, the question we seek to answer is,
does the difference we see here imply a change in the meaning of proportion? Have we transitioned to a
fundamentally new relationship? Or are the ancient and modern conceptions linked at some deep level?

4. Reconciliation

Despite the differences we have noted, the ancient and modern conceptual constructs have in common the
idea of a relationship that persists from one situation to another. We figure the price of 48 oz. of silver
assuming that the relationship of price to weight does not vary from the original situation where 3 oz. were
obtained for 17s. We assume that the man travels at the same rate on all trips, so if he doubles his distance he
doubles his time, if he triples his distance he triples his time, and so forth, and conversely when multiplying
his time by any chosen factor he multiplies his distance by the same factor. Even in the ancient setting, a
proportion is a means of extrapolating from one situation to another. The price of any quantity of silver
can be computed, provided the same market prevails. The distance travelled in any number of days can be
found, provided the same man travels.

The notion that there is something that endures and exerts a uniform influence on the relationships
between the specific magnitudes observed on different occasions is common to both the ancient and modern
conceptions. To capture the idea of something that is general but that has specific instances, we might
think of a species or a kind: all circles, all triangles with a given trait, all points on a given line, all nuggets
of gold, all sales of silver in a given market, all walking trips by a man who always walks at the same
rate. Within each species, there are individual instances and each instance has specific quantitative aspects.
Proportionality refers to the way these aspects relate from instance to instance.

To investigate the properties of proportional relationships, we will build a model that enables us to
experiment with idea of a species with instances, each of which has particular quantitative aspects. We
want to reduce to the bare essentials. We need a collection of things and we the quantities associated with
each of at least two aspects of each thing. Modern mathematics supplies what we need to build a model of
extraordinary generality from meager resources. A set is a collection of individuals between whom we can
distinguish, but about whom we need know nothing else. So imagine a set X that has at least two elements;
the set is the species, and the elements are the instances. As yet, our elements have no quantitive aspects or
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associated numbers. To complete our model, then, we need to equip each element of X with these things.
The minimal way to do this is simply to associate numbers to the element of X , one number for each aspect.
The mathematical object that does such work is a function. So, imagine two functions, f and g from X to
R

×. Each function tells us the value of a specific quantitative aspect of the individual to whom we apply
the function. If x ∈ X , f(x) is the magnitude of the “f -ness” of x and g(x) is the magnitude of the “g-ness”
of x.

By taking a set equipped with two such functions, we build an imaginary model of all the data we
absolutely require to speak about proportionality. But we have not guaranteed that there is a proportional
relationship. So let us perform a test to see whether proportionality is present. The ancients would make
the test by asking if it is it the case that for any two elements of X , the ratio of their f -values is the same as
the ratio of their g-values? In a more modern paraphrase, is it the case that the following ancient criterion

for proportionality holds?

For all z, w ∈ X,
f(z)

f(w)
=

g(z)

g(w)
. (ACP )

If APC is true, then we have a situation that can be described in perfect analogy to the phrasing of Elements

VI,1, viz., The objects in X have f aspects that are to one another as their g aspects. Moderns, on the other
hand, would make the test by asking whether the following modern criterion for proportionality is true:

There is k ∈ R
× such that for all x ∈ X , g(x) = k f(x). (MCP )

As a matter of fact, the two tests are equivalent:

Proposition. For any set X and functions f, g : X → R
×, (ACP ) is true if and only if (MCP ) is.

Proof. Suppose f, g : X → R
× satisfies (APC). Select a specific element w0 ∈ X . Then for all x ∈ X ,

g(x) = g(w0)
f(w0)f(x). Let k = g(w0)

f(w0)
. This shows (MCP ). Conversely, suppose (MCP ) is true. Pick any

z, w ∈ X . Then g(z)
g(w) = k f(z)

k f(w) = f(z)
f(w) . QED

5. Conclusions

The essential features of situations where proportions arise are modeled by an abstract system consisting of a
set X (with two or more elements) equipped a pair of R

×-valued functions whose values have a constant ratio.
We call such a system a model of proportionality. In specific situations where proportional relationships arise,
the set X is a collection of objects belonging to some natural kind (e.g., circles, triangles of some specific
type or other geometric or mathematical objects, or other kinds of things such as economic transactions,
idealized physical objects, etc.), and the functions are quantitative aspects of the individuals in the kind
(e.g., the radius, diameter or circumference of a circle or the side lengths, areas or angles of a triangle, or the
price paid and amount purchased in a transaction, etc.). Some important features of proportional situations
are not immediately evident in the tools used to reason about them. The analogical relations that appear in
Euclid and in schoolbook exercises in proportion do not make explicit the enduring conditions that justify
the analogy. Similarly, the contention that proportionality is a homogeneous linear relation between two
“varying quantities” also leaves the out the background that explains the relation. Of course, the model
of proportionality that we propose does not itself provide these missing components, but it does give a
conceptual framework that has within it a place for this information to be displayed in a uniform way in
many different examples.

6. Extensions

Elements , Book V, Definition 12 defines the alternation of the proportion A : B :: C : D to be the proportion
A : C :: B : D. Proposition 16 says that if four magnitudes are proportional, then they are also proportional
alternately. As usual, the proof begins with a restatement of the claim in terms of labelled quantities. It
reads, “Let A, B, C, and D be four proportional magnitudes, so that A is to B as C is to D. I say that they
are also so alternately, that is A is to C as B is to D.”
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In terms of the model we have proposed, Proposition 16 says that if f1 and f2 are proportional functions on
X = { 1, 2 } then the functions g1, g2 : { 1, 2 } → R

× defined by gi(j) := fj(i) are also proportional. We will
extend Proposition 16 to a more general alternation principle, suggested by the following design:

a p a q · · · a r
b p b q · · · b r
...

...
...

...
c p c q . . . c r

Proportionality, as we have defined it, is an equivalence relation on the set of functions on a set. In the
design above, each rows may be viewed as function defined on the columns and each column may be viewed
as a function defined on the rows. The entries make it clear that if the rows are in the same proportionality
class, then the columns are, too. More abstractly, we have the

Alternation Theorem. Let { fj | j ∈ J } be a family of functions fj from a set X to R
×, all in the same

proportionality class. For each x ∈ X , define a function gx from J to R
× by

gx(j) := fj(x).

Then the functions { gx | x ∈ X } are in the same proportionality class of functions from J to R
×.

Proof:. Pick one of the fj and call it F . Then, for each fixed j, we have a fixed non-zero real number kj

such that for all x ∈ X , fj(x) = kj F (x). Now, for any two elements z, w ∈ X , we have: for all j ∈ J :

gz(j) = fj(z)

= kj F (z)

= kj [F (z)/F (w)] F (w)

= [F (z)/F (w)] fj(w)

= [F (z)/F (w)] gw(j).

Thus, gz and gw are in the same proportionality class of functions on J . QED
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